CONF-DOP_HTA-06-24

No. H01-09/0339

1.	Unique identification code of the product-type	HALFEN Anchor channel HTA 28/15, HTA 38/17, HTA 41/22, HTA 40/22, HTA 40/22P, HTA 40/25, HTA 49/30, HTA 50/30, HTA 50/30P, HTA 52/34, HTA 54/33, HTA 55/42, HTA 72/48 and HTA 72/49
2.	Type, batch or serial number or any other element allowing identification of the construction product as required pursuant to Article 11(4)	See ETA-09/0339, 30.05.2024, Annex A1, A2 and A4
	Intended use or uses of the construction product, in accortechnical specification, as foreseen by the manufacturer:	dance with the applicable harmonized
	Generic type and use	Cast-in, C-shaped, hot-rolled or cold-formed anchor channel with at least 2 metal anchors fixed on the profile back in combination with hammer-head bolts (HTA 28/15, HTA 38/17 and HTA 41/22) and hook-head bolts (HTA 40/22 – HTA 72/49)
3.	Product size covered (anchor channels and corresponding screws)	HTA 28/15 with channel bolt HS 28/15 M6 – M12, HTA 38/17 with channel bolt HS 38/17 M10 – M16, HTA 41/22 with channel bolts HZS 41/22 M12 – M16 HTA 40/22 with channel bolt HS 40/22 M10 – M16, HTA 40/22 with channel bolt HS 40/22 M10 – M16, HTA 40/22 with channel bolt HS 40/22 M10 – M16, HTA 40/22 with channel bolt HSR 40/22 M10 – M16, HTA 40/25 with channel bolt HS 40/22 M10 – M16, HTA 49/30 with channel bolt HS 50/30 M10 – M20, HTA 50/30 with channel bolt HS 50/30 M10 – M20, HTA 50/30P with channel bolt HS 50/30 M10 – M20, HTA 52/34 with channel bolt HS 50/30 M10 – M20, HTA 54/33 with channel bolt HS 50/30 M10 – M20, HTA 55/42 with channel bolt HS 50/30 M10 – M20, HTA 72/48 with channel bolt HS 72/48 M20 – M30, HTA 72/49 with channel bolt HS 72/48 M20 – M30
	For use in	Cracked and non-cracked concrete C12/15 to C90/105 according to EN 206-1:2000-12
	Anchor material / Screw material and intended use	 Hot-dip galv. steel / electropl. steel for dry internal conditions Hot-dip galv. steel / hot-dip galv. steel or electroplated steel with special coating also for internal conditions with normal humidity Stainless steel / stainless steel also for medium corrosion exposure High corrosion resistant steel / high corrosion resistant steel also for high corrosion exposure
	Loading	Static & quasi static tension and shear loads perpendicular as well as parallel (with HSR bolt) to the longitudinal channel axis, fatigue tension loads, seismic tension and shear loads perpendicular and parallel to the longitudinal channel axis (for HSR bolts), and fire exposure
4.	Name, registered trade name or registered trademark and contact address of the manufacturer as required pursuant to Article 11(5)	Leviat GmbH, Liebigstraße 14, 40764 Langenfeld, Germany
5.	Where applicable, name and contact address of the authorized representative whose mandate covers the tasks specified in Article 12(2)	-

CONF-DOP_HTA-06-24

No. H01-09/0339

6.	System or systems of asses constancy of performance of set out in Annex V		System 1	
7.	In case of the declaration of construction product covered	performance concerning a by a harmonised standard	-	
8.	In case of the declaration of construction product for which Assessment has been issue	ch a European Technical	production control;	O1, the notified body 2323 Inufacturing plant and of factory assessment and evaluation of
	Declared performance			
	Essential Characteristics	Design Method	Performance	Harmonized Technical Specification
	Characteristic resistance for tension		ETA-09/0339, Annex C1-C3	
	Characteristic resistance for shear (without reinforcement)		ETA-09/0339, Annex C4-C6	
9.	Characteristic resistance for combined tension and shear	EOTA TR 047, EOTA TR 050,	ETA-09/0339, Annex C7	5AD 220000 04 0504
9.	Displacement for serviceability limit state	EN 1992-4	ETA-09/0339, Annex C7	EAD 330008-04-0601
	Characteristic resistance for fatigue loading		ETA-09/0339, Annex C8-C9	
	Characteristic resistance for seismic loading		ETA-09/0339, Annex C10-C11	
	Characteristic resistance for fire exposure		ETA-09/0339, Annex C12-C13	
	Where pursuant to Article 37 Technical Documentation ha requirements with which the	is been used, the	-	
10.	The performance of the proc	luct identified in points 1 and 2	2 is in conformity with the declared	performance in point 9.
This	declaration of performance is	issued under the sole respon-	sibility of the manufacturer identifie	ed in point 4.

CONF-DOP_HTA-06-24 No. H01-09/0339

Langenfeld, 27.06.2024

Signed for and on behalf of the manufacturer by

Stephan Bauerdick

(Operations Director | Central Operations)

Dr. Ing. Dirk Albartus

pra. O. Il Illets

(Prokurist)

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 1:

Table C1: Characteristic Resistances under tension load - steel failure anchor channel

Anchor chann	nel		steel	28/15	38/17	41/22 / 40/25	40/22 / 40/22P	49/30	50/30 / 50/30P	54/33	52/34	55/42	72/49 72/48
Steel failure:	Anchor												
Characteristic			carbon	9	18	18 / 20	20/31	31	31 / 56	56	56	80	102
Characteristic	N _{Rk,8,8}	[kN]	stainless 3)	12,7	22,6	22,6	20/31	35,3	31 / 56	56,5	56	. 2)	102
resistance			stainless D4	15,3	27,2	22,6	_ 2)	35,3	_ 2)	56,5	_ 2)	- 2)	_ 2)
Partial factor	Υμε	1)					1,8	,					
Steel failure:	Connec	tion cl	nannel/ancho	r									
Clara and a sindia			carbon	9	18	18 / 20	20 / 29	31	31 / 39	55	55	80	100
Characteristic	N _{Rk,s,c}	[kN]	stainless 3)	12,7	22,6	22,6	20 / 29	35,3	31 / 39	56,5	55	. 2)	100
resistance			stainless D4	15,3	27,2	22,6	_ 2)	35,3	_ 2)	56,5	_ 2)	. 2)	. 2)
Partial factor	¥Ms,c	a 1)					1,8						
Steel failure:	Local fle	exure	of the channe	llips									
Spacing of channel bolts for Norks,	SIN	[mm]	all materials	56	76	83 / 80	79	100	98	107	105	109	144
			carbon	9	18	20	38	31	43	55	72	110	100 / 120
Characteristic resistance	N ⁰ RKs,I	[kN]	stainless 3)	12,7	22,6	26 / 22,6	38	35,3	43	56,5	72	_ 2)	100 / 120
			stainless D4	16,1	35,4	26 / 22,6	_ 2)	35,3	- 2)	56,5	_ 2)	- 2)	- 2)
Partial factor	YMs,	1)					1,8						

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Anchor cha	nnel		steel	28/15	38/17	41/22 40/25	40/22 40/22P	49/30	50/30 50/30P	54/33	52/34	55/42	72/49	72/48
Char. flexure	влех	m]	carbon, stainless 3)	317	580	733 /	1389	1673	2803	2984	3373	6447	8617	8593
resistance of channel	MRk,s,flex	[NM]	stainless D4	432	836	749 /	_ 2)	2528	_ 2)	2984	_ 2)	_ 2)	_ 2)	_ 2)
Partial factor	¥Ms,	Лех ¹⁾						1,15						

¹⁾ In absence of other national regulations

²⁾ No performance assessed

³⁾ Valid for all stainless steel materials except D4, see Annex A4

²⁾ No performance assessed

³⁾ Valid for all stainless steel materials except D4, see Annex A4

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 2:

Table C3: Characteristic resistances under tension load – steel failure of HALFEN channel bolts

HALFEN Channel	bolts Ø			M6	M8	M10	M12 3)	M16 3)	M20	M24	M27	M30
Steel failure												
			4.6	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic		ri.b.i3	8.8	16,1	29,3	46,4	67,4 ⁴⁾ (48,5)	125,6 (96,3)	196,0	282,4	367,2	448,8
resistance	Naks	[kN]	50 1)	10,1	18,3	29,0	42,2 (40,3)	78,5 (64,0)	122,5	176,5	229,5	280,5
			70 1)	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,7
			4.6					2,00				
Devil al factor	21		8.8					1,50				
Partial factor	¥Ms ²⁾		50 ¹⁾					2,86				
			70 1)					1,87				

¹⁾ Materials according Annex A2 and A3

²⁾ In absence of other national regulations

³⁾ values in brackets for HZS 41/22

^{4) 50,7} kN for HS 30

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 3:

Table C4: Characteristic resistances under tension load - concrete failure

Anchor channel				28/15	38/17	41/22 40/22 40/25	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Concrete failure:	Pull-out											
Characteristic resistance in	Round anchors		ξ.	7,6	13,6	13,6	21,2	21,2	34,0	34,0	41,6	_ 2)
cracked concrete C12/15	I-anchors	N _{Rkp}	포	11,7	11,7	14,0	17,8	21,0	24,7	29,7	40,6	46,4
Characteristic resistance in	Round		5	10,6	19,0	19,0	29,7	29,7	47,6	47,6	58,2	_ 2)
uncracked concrete C12/15	I-anchors	N _{Rkp}	Ā	16,4	16,4	19,6	24,9	29,4	34,6	41,6	56,8	65,0
	C20/25							1,67				
	C25/30							2,08				
	C30/37	1						2,50				
Increasing factor	C35/45							2,92				
for	C40/50	Ψο	⊡					3,33				
$N_{Rk,p} = N_{Rk,p,(C12/15)} \cdot \Psi_c$	C45/55	1						3,75				
NRkp.(C12/15) · Ψc	C50/60	1						4,17				
	C55/67	1						4,58				
	≥C60/75	1						5,00				
Partial factor		үмр=үм	(c 1)					1,5				
Concrete failure:	Concrete											
Product factor k ₁		k _{cr,N}		7,2	7,8	7,9	8,0	8,1	8,2	8,7	8,9	8,9
T TOUBLE TECTOT K		Kucr,	V	10,3	11,2	11,2	11,5	11,5	11,7	12,4	12,6	12,7
Charact.edge spa	cing	C _{cr} ,N	[mm]	111	171	176	195	199	216	260	269	270
Charact.spacing		Scr,N	E					2,0 Ccr,N				
Partial factor		YMe 1)					1,5				
Concrete failure:	Splitting											
Charact.edge spa	cing	Ccr,sp	[mm]	135	228	246 / 252	273	282	318	465	525	546
Charact.spacing		Scr.sp	트					2,0 Ccr,sp	>			
Partial factor Y _{Mep} 1) 1,5												

¹⁾ In absence of other national regulations

²⁾ No performance assessed

So Value valid for minimum I-anchor size; for other sizes the characteristic resistance can be calculated using An from Annex A6, Table A3 or the actual dimension.

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 4:

Table C5: Characteristic resistances under shear load

Anchor cha	annel		steel	28/15	38/17	41/22 40/25	40/22 / 40/22P	49/30	50/30 / 50/30P	54/33	52/34	55/42	72/49 / 72/48
Steel failur	e: Ancho	r											
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteris resistance	VRK,s,a	y [kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	_ 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial facto	r y	/s 1)					1	,8					
Steel failur	e: Conne	ction cl	hannel / anch	or									
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteris resistance	VRk,s,c	y [kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	. 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial facto	r ym	s,ca 1)					1	,8					
Steel failur			of channel lip	s									
Spacing of channel bol for V _{RksJ}	ts s,v	[mm]	all materials	56	76	83 / 80	79	100	98	107	105	109	144
			carbon	9	18	29,7 / 20	35	31	52 / 59	55	78	110	100 / 146
Characteris resistance	V ⁰ Rk,s.	y [kN]	stainless 4)	12,7	22,6	22,6	35	35,3	52 / 59	56,5	78	_ 3)	100 / 146
			stainless D4	18	30	22,6 / 30,8	_ 3)	58,9	_ 3)	56,5	_ 3)	_ 3)	_ 3)
Partial facto	r Y	ts,I 1)					1	,8					
Concrete fa	ailure: Pr	y-out											
Product fac	tor	k ₈ ²⁾	all materials	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Partial facto	r	γ _{Mc} 1)					1	,5					
Concrete fa	ailure: Co	ncrete	edge										
Product-	cracked concrete	k _{ar,V}	all materials	4,5	7,5	6,5 / 7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
factor k ₁₂	uncracke concrete	d k _{uer,v}	all materials	6,3	10,5	9,1 / 10,5	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Partial facto	r	γ _{Mc} 1)					1	,5					
		1.											

¹⁾ In absence of other national regulations

²⁾ Without supplementary reinforcement. In case of supplementary reinforcement the factor ke should be multiplied with 0,75.

³⁾ No performance assessed

⁴⁾ Valid for all stainless steel materials except D4, see Annex A4

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 5:

Table C5 (continued): Characteristic resistances under shear load

Anchor channel			steel	40/22P
Steel failure: Anchor				
Characteristic resistance	$V_{Rk,s,a,x}$	[kN]	carbon	18,6
Partial factor	¥Ms ¹)		1,8
Steel failure: Connection ch	nannel / and	hor		
Characteristic resistance	$V_{Hk,s,c,\kappa}$	[kN]	carbon	17,4
Partial factor	YMa,ca	1)		1,8
Steel failure: Connection be	etween char	nnel lips	and cha	nnel bolt
Characteristic resistance	$V_{Rk,s,l,x}$	[kN]	carbon	13,5
Installation factor	Yinst 1)		1,2

¹⁾ In absence of other national regulations

Table C6: Charact, resistances under shear load - steel failure of HALFEN channel bolts

HALFEN Chann	el bolts (2	3		M6	M8	M10	M12	M18	M20	M24	M27	M30
Stool failuro												
			4.6	4,8	8,8	13,9	20,2	37,7	58,8	84,7	110,2	134,6
Characteristic	,, I		8.8	8,0	14,6	23,2	33.7	62,3	98,0	141,2	183,6	224,4
resistence	V _{Rk,s}	[kN]	50 ¹⁾	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168,3
			70 1)	ε,4	15,4	24,4	35.4	65,9	102,9	148,3	192,8	235,6
			4.6	6,3	15.0	29,9	52.4	133.2	259,6	449,0	665,8	899,6
Characteristic			8.8	12,2	30,0	59,8	104.83	266,44)	519,3 ⁵⁾	898,0	1331,5	1799,2
flexure resistance	M ^c Rk3	[Nm]	50 ¹⁾	7,6	18,7	37,4	65,5	186,5	324,5	561,3	832,2	1124,5
			70 ¹⁾	10,7	26,2	52,3	91,7 3)	233,14)	454,4	785,8	1165,1	1574,3
			4.6					1,67				
		24	8.8					1,25				
Partial factor	YM	8 27	50 ¹⁾					2,33				
			70 1)					1,56				

¹⁾ Naterials according Annex A2 and A3

 $^{^{\}circ}$ For HTA 28/15 $M^{0}\text{Fit,s}$ is limited to 84 Nm.

 $^{^{\}mbox{\tiny (1)}}$ In absence ct other national regulations

 $^{^{\}rm 4}$ For HTA 38/17 $\rm M^0_{PR,a}$ is limited to 231 Nm. $^{\rm 5}$ For HTA 49/30 $\rm M^0_{PR,s}$ is limited to 509 Nm.

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 6:

Table C7: Displacements under tension load

Anchor channel			28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Tension load	Nek	[kN]	3,6	7,1	7,9	11,5	12,3	15,5	21,8	31,7	39,7
Short-term displacement	δ _{N0}	[mm]	0,3	0,3 0,6	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6 1,3	0,8	0,8	0,8	1,0	1,0	1,0	1,0

Table C8: Displacements under shear load

Anchor channel			28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Shear load in y-direction 1)	Vy	[kN]	3,6	7,1	7,9 13,9	13,9	12,3 20,6	23,4	21,8 31,0	43,7	39,7 57,9
Short-term displacements	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long-term displacements	δ _{V,y,=}	[mm]	0,9	0,9	0,9	0,9	0,9	0,9	1,8	1,8	1,8
Shear load in x-direction 2)	Vx	[kN]	_ 3)	_ 3)	_ 3)	4,5	_ 3)	_ 3)	_ 3)	_ 3)	_ 3)
Short-term displacements	δ _{V,x,0}	[mm]	_ 3)	_ 3)	_ 3)	0,2	_ 3)	_ 3)	_ 3)	. 3)	_ 3)
Long-term displacements	δν,κ,∞	[mm]	_ 3)	- 3)	_ 3)	0,3	_ 3)	_ 3}	_ 3)	. 3)	_ 3)

¹⁾ y-direction (perpendicular to longitudinal axis of channel)

Table C9: Characteristic resistances under combined tension and shear load

Anchor channel		28/15	38/17 41/22	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	55/42	72/49 72/48
Steel failure: Local	failure by	flexure	of chan	nel lips	and failu	re by fle	exure of c	hannel		
Product factor	k ₁₃		Valu	es acco	rding to El	N 1992-	4:2018, se	ection 7.4	4.3.1	
Steel failure: Failur	e of anch	or and c	onnecti	on betw	een anch	or and	channel			
Product factor	k ₁₄		Valu	es acco	rding to El	N 1992-	4:2018, se	ection 7.4	1.3.1	

²⁾ x-direction (in direction of the longitudinal channel axis)

³⁾ No performance assessed

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 7:

Table C10: Combinations of anchor channels and channel bolts under fatigue tension load

Anchor	channel			Channel b	olts				
Profile	Anchor	d₁ [m m]	Material	Channel bolt	Thread Ø [mm]	Grade	Material		
			Ctool		M12	8.8			
40/22	B6	8	Steel hot-dip galv.	HS 40/22	M16	4.6			
			not-dip gaiv.		IVITO	8.8			
		B6 10	Stool hat dip asky:	HS 40/22	M12	8.8 / A4-70	Steel		
40/22P	B6		Steel hot-dip galv.; stainless steel		M16	4.6	electro-		
			Stairiless steel		IVITO	8.8 / A4-70	plated, hot-		
50/30	B6	10	Steel	HS 50/30	M16	4.6	dip galv.;		
50/50	B0	10	hot-dip galv.	HS 50/30	M20	8.8	stainless		
EU/SUD	DC	12	Steel	HS 50/30	M16	4.6	steel		
50/30P	50/30P B6 1		hot-dip galv.	HS 50/30	M20	8.8			
52/34	B6	12	Steel hot-dip galv.;	HS 50/30	M16	8.8 / A4-70			
32/34	Б0	12	stainless steel	HS 50/30	M20	0.0 / A4-70			

Design Method I acc. EOTA TR 050, June 2022

Table C11: Characteristic resistances under fatigue tension load after n load cycles without static preload (N_{Ed} = 0) – Steel failure

Anchor channel		40/22 40/22P		22P	50/30 50/30P	52	/34			
	Load cycles	$\Delta N_{Rk,s;lo;n}$ with $N_{lok,s,n} = 0$								
	n	[kN]								
		carbon	carbon	stainless	carbon	carbon	stainless			
Characteristic resistances under	≤ 104	11,7	12,8		16,5	22,2				
	≤ 105	6,7	7,7		9,8	13,2				
fatigue tension load	≤ 10 ⁶	3,8	4	,7	5,8	7,9				
without static	≤ 2·10 ⁶	3,2	4	,0	4,9	6	,7			
preload	≤ 5.106	2,6	3	,3		5	,5			
	≤ 7·10 ⁶	2,4			4.0					
	≤ 10 ⁸	1,2	3,3	3,0	4,0	5,5	5,1			
	> 108	-								

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 8:

Table C12: Characteristic resistances under fatigue tension load after n load cycles with lower load share N_{Elok} – Concrete cone and pull-out failure

	Load				η _{k,c,f}	at = η _{k,p,}	fat [-]				
	cycles n	S _{lok} =									
	"	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	
	≤ 10⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120	
	2· 10 ⁴	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114	
Reduction factor for	5- 10⁴	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106	
	1· 10 ⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100	
$\Delta N_{Bk,c,E,n} = \eta_{k,c,tat} \cdot N_{Bk,c}^{-1}$	2⋅ 10⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094	
$\Delta N_{\text{Rk,p,E,n}} = \eta_{\text{k,p,fat}} \cdot N_{\text{Rk,p}}^{2}$	5· 10 ⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087	
S _{lok} = 2,25·N _{Elok} /N _{Rk,c(p)} ≤ 0,8 3)	1· 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081	
Olok = 2,2014BBB14Rk(cp) = 0,0	2⋅ 108	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075	
	5· 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067	
	1· 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061	
	2· 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055	
	5· 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047	
	10 ⁸	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041	

¹⁾ N_{Rkc} static resistance according to Annex C3 and EN 1992-4:2018 or EOTA TR 047, May 2021

²⁾ NRkp static resistance according to Annex C3

³⁾ Neisk characteristic value of the static pre-load decisive for concrete cone or pull-out failure

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 9:

Table C13: Combinations of anchor channels and channel bolts under seismic load

Anchor	channel	Channel bolt						
Profile	Material	Channel bolt	Thread Ø	Grade	Material			
40/22P	hot-dip galvanized	HSR 40/22	16	8.8	Steel electro-plated, hot-dip galvanized			

Table C14: Characteristic resistances under seismic tension load – steel failure

Anchor channel			steel	40/22P					
Steel failure: Anchor									
Characteristic resistance	NRk,s,a,eq	[kN]	carbon	31					
Partial factor	YMs,a	1)		1,8					
Steel failure: Connection channel/anchor									
Characteristic resistance	NRk,s,c,eq	[kN]	carbon	29					
Partial factor	¥Ms,ca	1)		1,8					
Steel failure: Local flexure of the cl	hannel lips	;							
Spacing of channel bolts for N ⁰ Rk,s,l,eq	SI,N	[mm]	carbon	79					
Characteristic resistance	N ⁰ Rk,s,l,eq	[kN]	carbon	38					
Partial factor	YMs,I 1)		1,8					

¹⁾ In absence of other national regulations

Table C15: Characteristic flexural resistances under seismic tension load

Anchor channel			steel	40/22P
Steel failure: Flexure of channel				
Characteristic flexural resistance of channel	MRk,s,flex,eq	[Nm]	carbon	1389
Partial factor	YMs,flex	1)		1,15

¹⁾ In absence of other national regulations

Table C16: Characteristic resistances under seismic tension load – steel failure of HALFEN HSR channel bolt

HALFEN HSR channel bolt			M16
Steel failure			
Characteristic resistance	NRk,s,eq	[kN]	125,6
Partial factor	YMs 1)	1,5

¹⁾ In absence of other national regulations

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 10:

Table C17: Characteristic resistances under seismic shear load - steel failure

Anchor channel			steel	40/22P
Steel failure: Anchor				
Characteristic resistance	V _{Rk,s,a,y,eq}	[kN]	carbon	35
Characteristic resistance	V _{Rk,s,a,x,eq}	[kN]	carbon	18,6
Partial factor	¥Ms,a ¹)		1,8
Steel failure: Connection channel/	anchor			
Characteristic resistance	V _{Rk,s,c,y,eq}	[kN]	carbon	35
Characteristic resistance	V _{Rk,s,c,x,eq}	[kN]	carbon	17,4
Partial factor	¥Ms,ca	1)		1,8
Steel failure: Local flexure of chan	nel lips un	der sh	ear load	
perpendicular to the longitudinal a	xis of the o	channe	el	
Spacing of channel bolts for V _{Rk,s,l,eq}	Si,v	[mm]	carbon	79
Characteristic resistance	V ⁰ Rks,l,y,eq	[kN]	carbon	35
Partial factor	YMs,I 1)		1,8
Steel failure: Connection between	channel lip	s and	channel	bolt under
shear in the direction of the longit	udinal char	nnel ax	tis	
Characteristic resistance	V _{Rk,s,l,x,eq}	[kN]	carbon	13,5
Installation factor	Yinst 1			1,2

¹⁾ In absence of other national regulations

Table C18: Characteristic resistance unter seismic shear load – steel failure of HALFEN channel bolt HSR

HALFEN channel bolt HSR	M16							
Steel failure								
Characterist, resistance	V _{Rk,s,eq}	[kN]	62,8					
Partial factor	γм	s 1)	1,25					

¹⁾ In absence of other national regulations

CONF-DOP_HTA-06-24

No. H01-09/0339

Annex 11:

Table C19: Characteristic resistances under tension and shear load under fire exposure – steel failure

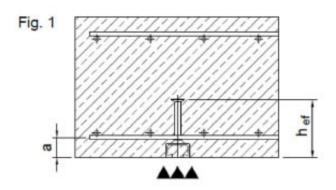
Anch	nor cha	nnel			28/15	38/17	41/22	40/25	40/22 40/22P	49/30	50/30 50/30P	54/33 52/34	55/42	72/49 72/48
Stee	failure	: Anch	or, Conn	ection	chan	nel / ar	chor,	Local	flexure	of char	nnel lips,	chann	el bolt	s
		M8			1,0	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
		M10			1,0	1,7	_ 2)	1,9	1,9	1,9	1,9	1,9	_ 2)	_ 2)
		M12			1,9	1,7	2,4	1,9	2,5	2,5	2,5	2,5	_ 2)	_ 2)
	R30	M16			_ 2)	3,2	2,3	3,6	6,0	4,0	6,0	6,0	6,3	6,3
		M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	4,0	9,5	8,9 10,1	10,3	10,3
		M24	124		_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	14,8	14,8
		M8			0,8	_ 2)	. 2)	. 2)	_ 2)	. 2)	_ 2)	_ 2)	_ 2)	. 2)
		M10	M12 M16 M20 M24 N _{Rks,E}		0,8	1,5	_ 2)	1,5	1,5	1,5	1,5	1,5	_ 2)	_ 2)
		M12			1,3	1,5	1,7	1,5	2,5	2,5	2,5	2,5	_ 2)	_ 2)
nces	R60	M16			_ 2)	2,4	1,8	3,6	4,5	3,5	4,5	4,5	4,8	4,8
sista	Characteristic resistances	M20			. 2)	_ 2)	. 2)	. 2)	_ 2)	3,5	7,1	6,5 7,5	7,6	7,6
tic re		M24			. 2)	- 2)	_ 2)	- 2)	- 2)	- 2)	- 2)	_ 2)	11,1	11,1
teris		M8		[kN]	0,6	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
arac		M10			0,6	1,0	_ 2)	1,1	1,1	1,1	1,1	1,1	_ 2)	_ 2)
်		M12			0,7	1,0	1,1	1,1	1,6	1,6	1,6	1,6	_ 2)	_ 2)
	R90	M16			_ 2)	1,4	1,2	2,0	2,9	2,5	3,0	3,0	3,3	3,3
		M20			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	2,5	4,8	4,2 4,8	4,9	4,9
		M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	. 2)	_ 2)	_ 2)	7,3	7,3
		M8			0,5	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
		M10			0,5	8,0	_ 2)	0,8	0,8	0,8	0,8	0,8	_ 2)	_ 2)
		M12			0,5	8,0	0,7	0,8	1,1	1,2	1,2	1,2	_ 2)	. 2)
	R120	M16			_ 2)	1,0	1,0	1,2	1,6	2,1	2,3	2,3	2,6	2,6
		M20			_ 2)	. 2)	_ 2)	_ 2)	_ 2)	2,1	3,6	3,0 3,5	3,6	3,6
		M24			_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)	5,4	5,4
Pa	rtial fac	ctor	ұм _{я,п} 1)	[-]						1,0				

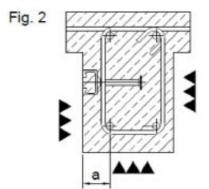
¹⁾ In absence of other national regulations

²⁾ No performance assessed

CONF-DOP_HTA-06-24

No. H01-09/0339


Annex 12:


Table C20: Characteristic resistances under tension and shear load under fire exposure

- concrete cone failure and min. axis distance of reinforcement

Anchor cha	28/15	38/17	41/22 40/25	40/22 40/22P	49/30	50/30 50/30P	54/33 52/34	55/42	72/49 72/48			
Min. axis dis	stance of re			o								
	R30	a		35	35	35	35	35	35	50	50	50
Min. axis	xis R60 a	7	35	35	35	35	35	35	50	50	50	
distance	R90	а	[mm]	45	45	45	45	45	45	50	50	50
	R120	a		60	60	60	60	60	60	65	70	70

¹⁾ The reinforced concrete has to be designed acc. to EN 1992. The fire resistance class of the concrete member is not part of this ETA.

